Microsoft Excel Charting

Course objectives:

- Distinguish between Charts and Graphs
- Creating a basic chart and template
- Format and configure chart output
- Represent Time, Frequency and Proportions
- Combining Charts

Student and Staff Training and Support

Email: training@library.uq.edu.au
Web: https://web.library.uq.edu.au/library-services/training/
Attendees may contact their trainer with enquiries and feedback related to training content. Please contact us via the email above for booking enquiries or your local I.T. support for general technical enquiries

Table of Contents

Getting Started with Excel Charts 3
Exercise 1. Create Basic Charts 3
Exercise 2. Insert a chart from selected data 4
Exercise 3. Switch data 5
Exercise 4. Change Data in Cells 5
Chart Tools 5
Exercise 5. Apply a predefined chart layout 5
Exercise 6. Change Chart Elements 6
Exercise 7. Save as a template 7
Exercise 8. Apply a template 7
Exercise 9. Create a Pie Chart 8
Exercise 10. Move a chart 12
Different Chart Types 12
Exercise 11. Create a Line Chart 12
Exercise 12. Scatter Chart 14
Exercise 13. Combine Scatter charts 16
Exercise 14. Scatter chart with time 17
Exercise 15. Combination Chart 18
Exercise 16. Add a secondary axis 20
Exercise 17. Empty cells and hidden cells 21
Exercise 18. Use images in charts 23
Exercise 19. Creating a histogram 25
Exercise 20. Graphing Quadratic Equations 26
Butterfly Charts Error! Bookmark not defined.
Exercise 21. Tornado/Butterfly Chart 27
Exercise 22. Box and Whisker Chart 30
Charts in Other Applications 31
Exercise 23. Charts in Word or Powerpoint 31

Getting Started with Excel Charts

The terms chart and graph are often used interchangeably but do have one significant difference A chart is a graphic representation of data.
A graph is a diagram of a mathematical function, but can also be used (loosely) about a diagram of statistical data.

Exercise 1.

Create Basic Charts
a. Insert a chart

1. Go to Basic Chart tab
2. Select any cell in the data

3. Go to Insert tab
4. On the Insert tab, click Recommended Charts
5. Click on OK for the default chart

Home	Insert	Page Layout	Formulas Dat
\square	\pm		
strations	Add-	Recommended	ì
-	ins ${ }^{-}$	Charts	Charts

b. Resize and reposition

1. Click on the chart on the worksheet
2. Click and Drag the handles to resize the chart

3. Hover mouse on chart to change the pointer $\stackrel{+}{+}$
4. Click and drag to reposition the chart on the worksheet
c. Change Data
5. Go to corner of highlighted area
6. Click and drag to exclude "Totals" cells

7. Click and drag to exclude "Average" cells
Chart Title $+\ddagger$
Chart Title $+\ddagger$

Insert a chart from selected data

a. Via the keyboard

1. Select cells to chart (A1:F6)

2. Press $\mathbf{A L T}+\mathbf{F} \mathbf{1}$

A chart will automatically apear, with all the default settings

b. Add a chart to a new sheet

1. Press F11

A chart will automatically apear, with all the default settings, on a new chart sheet

Exercise 3.

There may be occasions when data may be more beneficial displayed in an alternative layout. This is an option that should be attempted with all charts

1. Click on the chart

This should currently chart each loan type for each school
2. Click Switch Row/column on the Chart Tools, Design tab

The chart will now reflect school loans for each loan type Be aware this will not be successful for all chart types
3. Click Switch Row/column on the Chart Tools, Design tab to revert back

Exercise 4.

Change Data in Cells

Charts will always be in sync with the data.

1. Change any cell value for loans

The charts will automatically update to reflect the change

Chart Tools

Exercise 5.

Apply a predefined chart layout

1. Select a chart on the worksheet
2. Click on Quick Layout on the Chart Design tab
3. Hover over a layout

A preview will show on the selected chart
4. Click any layout to apply changes

Chart elements are added, depending on the layout. These will need customised.

Exercise 6.

Change Chart Elements

a. Chart Elements

1. Click on the Chart Elements icon
2. Select the elements to include or exclude

Alternatively, Go to the Chart Design tab
3. Click the Add Chart Element button
4. Hover over the appropriate element: Axes Titles
5. Select any option to add or remove

6. Click on the Chart Elements icon

7. Click on the Legend arrow
8. Select Top to reposition the element
9. Click Chart Title marker
10. Select More Options.

This will display a formatting pane at the right of the screen

2. Click Chart Title element
3. Enter a title - Library Loans

Alternatively
4. Enter =
5. Click on cell A1

6. Press Enter
b. Chart Styles

1. Click on the Chart Styles icon
2. Select a new style for the selected chart

3. Click on the Color tab
4. Select new chart theme colours

c. Chart colours

1. Double Click on the Chart edge
2. Select Gradient Fill to Format Chart Area

This will only apply to the selected chart. To apply a colour scheme to the whole worksheet theme colours have to be selected.

Format Chart Area *
Chart Options - Text Options

- Ω 風

No fill
Solid fill

- Gradient fill

Picture or texture fill

Exercise 7.

Save as a template

1. Right click on the Chart
2. Select Save as Template...
3. Enter filename - NewColumnTemplate.crtx

Exercise 8.

Apply a template

1. Select the data range (A1:B7)
2. Press Alt F1
3. Click Change Chart Type on the Chart Tools, Design tab
4. Click on the All Charts tab

5. Click on the Templates folder
6. Select the NewColumnTemplate shown
7. Click on OK

Exercise 9.

Create a Pie Chart

Pie charts are best used to chart only one category or data series.

1. Go to the Pie Chart sheet
2. Select the data (A2:C7)

A	B	c	D
UQ Student Numbers 2013-2017			
	Undergraduates	Postgraduates	Totals
2013	35126	12585	49724
2014	36168	13118	51300
2015	35726	13800	51541
2016	35226	14749	51991
2017	34770	16436	53223

3. Click the Pie Chart icon on the Insert tab
4. Select 2-D Pie

The resulting chart will only display one data series undergraduates

5. Click the Switch Row/Column button

This will chart by year rather than by graduate

9. Apply a Quick Layout to add data labels
10. Click data labels in any data series
11. Click the Label options icon
12. Expand Label Options
13. Check the Value
14. Clear the Percentage
15. Click a data series
16. Click the Series options icon
17. Change the Doughnut hole size -35%

Format Data Labels
Label Options * Text Options
() 人 I
4 Label Options
Label Contains
\square Value Erom Cells
\square Series Name
\square Category Name
\checkmark Value

Format Data Series

Series Options *
a) \square ill

4 Series Options
Angle of first slice
Doughnut Explosion
Doughnut Hole Size

18. Click the Select Data button on the Chart Tools, Design tab
19. Click on the Postgraduates data series
20. Click the up arrow \triangle
Legend Entries (Series)

| 祭 Add | Ad | Edit | X Remove | Δ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| \square | Undergraduates | | | |
| | Postgraduates | | | |

21. Click on OK

This changes the order of the data series in the chart and makes the repesentation of values more reliable

a. Chart undergraduates

1. Select data range to chart (A2:B7)
2. On the Insert tab, click Recommended Charts
3. Select the sample Pie Chart
4. Click on OK
5. Click the Add Chart Element button
6. Hover over Data Labels
7. Select Data Callout

This displays the category and percentage to the chart
8. Double click on the chart

This will display a formatting pane at the right of the screen
9. Click on any data label

10. Click the Label Options icon
11. Clear the Category Name

Format Data Labels
Label Options \geqslant Text Options
() Q I I Ill

4 Label Options
Label Contains
\square Value Erom Cells
\square Series Name
\square Category Name
Value
\checkmark Percentage
b. Chart postgraduates

1. Select Data range to chart (C2:C7)

4	A	B	c
1	UQ Student Numbers 2013-2017		
2		Undergraduates	Postgraduates
3	2013	35126	12585
4	2014	36168	13118
5	2015	35726	13800
6	2016	35226	14749
7	2017	34770	16436

2. On the Insert tab, click Recommended Charts
3. Select the sample Pie Chart
4. Click on OK

The chart displayed does not have the correct legend

5. On the Chart Tools, Design tab, click Select Data
6. Click the Edit button
7. Select the range (A3:A7)
8. Click on OK

1. Select a single data point in the series (A wedge)
2. Go to the Format task pane
a. Rotate the chart using the "Angle of first slice"
b. Extract a data value using the "Point explosion"

Format Data Point
Series Options *
\leftrightarrow, \square ill
4 Series Options
Plot Series On

c. Chart Totals (optional)
3. Repeat the process to create a Totals chart
a. Select a data series
b. Insert a pie chart
c. Select Data to add the correct category range
d. Adjust the labels and formats to suit

Exercise 10.

Move a chart

1. Click on a chart
2. On the Chart Tools, Design tab, click Move chart
3. Select the New Sheet option
4. Add a new name - Totals Chart
5. Click on OK

Move Chart

Choose where you want the chart to be placed:

On onject in: Pie Chart

Different Chart Types

Exercise 11.

Create a Line Chart

A line chart is most often used to visualise a change of data over a period of time.
a. Create Chart

1. Go to Line Chart sheet
2. Click in data
3. On the Insert tab, click Recommended Charts
4. Select the Line chart
5. Click on OK

6. Resize and Reposition, as necessary
\qquad
\qquad
\qquad
7. Double click on the data series
8. Click the Fill and Line icon \langle
9. Click Marker
10. Expand Marker Options
11. Select Built-in:
a. Select a type
b. Set a size
```
Format Data Series *
~ Line ~
Marker Options
    Automatic
    None
    O Built-in
    Type - -
    Size 5 
```


b. Add Error Bars

1. Click the Chart Elements icon \dagger
2. Click arrow beside Error Bars
3. Select Standard Error

Error Bars will be added to data points on chart


```
Format Error Bars
Error Bar Options *
<) & |ll
Vertical Error Bar
    Direction
        T. Both
        # Minus
        T Plus
    End Style
        O NoCap
        OC\underline{ap}
```

 8. Change Error amoount to Percentage
 Adjust this \% value as necessary
 Error Amount
 Eixed value
 - Percentage
 Standard deviation(s)
 Standard error
 Custom
 Standard deviation(s) Custom
c. Add drop lines

1. Click Add Chart Element

2. Hover over Lines
3. Select Drop Lines

4. Double click on the drop lines
5. Select a colour

Format Drop Lines • \times
Drop Line Options *

- \quad -

4 Line
No line

- Solid line

Gradient line
Automatic
Color
olor
2

Exercise 12.

Scatter Chart
Depending on the layout of the source data, a scatter chart should be created in a particular way to ensure the results are correct. The most reliable way in excel is to create a scatter chart from scratch. Selecting data to insert a scatter chart may provide unreliable results.

1. Go to the Scatter Chart tab

2. Click into an empty cell

Ensure the empty cell is surrounded by blank cells. Excel will chart any connecting data
3. On the Insert tab, click on the Scatter chart
4. Select the Scatter chart

This will provide a blank chart canvas
5. Click the Select Data button

7. Add the Series details below
a. Series Name:

Click Sugar Content in Fruit cell
b. Series X Values:

Select Fibre \% values - B3:B23
c. Series Y values:

Clear the cell content
Select Fructose \% values - C3:C23
Do NOT include the column headings or the chart will be incorrect.

8. Click on OK

A scatter chart will display

d. Adjust chart elements

Go to the Chart, Design tab

1. Click on Add Chart Element
2. Hover over Axis Title Click on Primary Horizontal

Repeat for Primary Vertical Axis Title
3. Click on the horizontal Axis Title object (X-Axis)

4. Click in the Formula bar
5. Enter =
6. Click on the Fibre \% cell B2
7. Press Enter
8. Repeat for the vertical Axis Title object, choose the Fructose \% cell C2

9. Press Enter
10. Click Chart Elements icon
11. Click data labels arrow
12. Select More options...
13. Click the Label Options icon
14. Expand Label Options
15. Clear Y value option
16. Check Value From Cells
17. Select the data range with fruit names - (A3:A23)
18. Click on OK
19. Change the label position to Below
e. Chart Sugar content in Vegetables (Optional)

1. Repeat the steps above to create a scatter chart for Sugar Content in Vegetables

Exercise 13.

Combine Scatter charts

1. Select the Sugar Content in Fruit chart
2. Press CTRL D to duplicate
3. Click Chart Elements icon
4. Clear Data Labels
5. Click the Select Data button
6. Click the Add button
7. Complete the details below:
a. Series Name:

Click Sugar in Vegetables cell
b. Series X Values:

Select Fibre \% values - F3:F23
c. Series Y values:

Clear the cell content

4 Label Options
Label Contains
\checkmark Value From Cells
\square Series Name
\square X Value
\square Yalue

Select Data Label Range
='Scatter Chart'!\$A\$3:\$A\$23

Select Fructose \% values - G3:G23

Do NOT include the column headings or the chart will be incorrect.
8. Click on OK
9. Click on OK again

Exercise 14.

1. Go to the Scatter with time sheet
2. Click any cell in data
3. Click Scatter chart on Insert tab
4. Select the Scatter chart

The chart will be displayed.
5. Double click the horizontal axis (X Axis)

6. Change the Axis Options
a. Bounds Minimum = 15

When Excel records times and dates it used the value one to refer to an entire day, and so times of days are portions of one
7. Click the vertical axis (Y Axis)
8. Change the Axis Options to begin the time at 40 minutes
In Excel 24 hours = 1, therefore 1 hour =1/24 As we need to start at 40 mins we need $2 / 3$ of 1 hour:

$$
\begin{gathered}
=(2 / 3)^{*}(1 / 24) \\
0.027778
\end{gathered}
$$

a. Change Bounds Minimum to 0.027778
9. Change the Axis Options to have 10 minute intervals

In Excel 24 hours = 1, therefore $\mathbf{1}$ hour = 1/24 We need 10 mins intervals so we need $1 / 6$ of 1 hour:

$$
\begin{gathered}
=(1 / 6)^{*}(1 / 24) \\
0.0069444
\end{gathered}
$$

a. Change the Units Major to $\mathbf{0 . 0 0 6 9 4 4 4}$

The Axes will change to display required settings

Exercise 15.

Combination Chart

A combination chart is a chart that combines two or more chart types in a single chart. We have seen this already with the basic chart as a clustered column with the averages represented as a line.
However, there will be instances where not only will different charts will be required but different axis scales too.
a. Create Chart

Go to the Combination Chart tab

1. Select the data range (A2:B7)
2. Press ALT F1

4	A	B	
1	Employability 3 months after Graduation		
2		Graduations	Grad
3	2013	6297	4
4	2014	5017	3
5	2015	4673	3
6	2016	5980	4
7	2017	6109	5
8			烖

b. Edit Chart Elements

1. On the Chart Tools, Design tab, click Select Data

2. Click the Add button
3. Select Series Name (C2)
4. Clear Series Values field
5. Select (C3:C7)
6. Click on OK
7. Click on OK again
8. Click Edit under Horizontal axis
9. Select cells (A3:A7)
10. Click on OK
11. Click the new data series
12. Click the Change Chart Type button
13. Change the Graduates Employed series to a Line Chart

14. Click on OK

Repeat Steps 1-6 for the Higher degrees (E2) \& (E3:E7)
Repeat Steps 1-6 for the Unemployed (G2) \& (G3:G7)
When adding subsequent data series they should be the same type as the last one used, so new data added should automatically be line charts
15. Click on OK

Axis Labels

Axis label range:
= 'Combination Chart'!SAS3:SAS7| 䳼:

16. Double click a data series line
17. Click the Fill \& line icon $\quad \wedge$
18. Check Smoothed line

Repeat for other data series lines

Format Data Series *
Series Options *

Line
Smoothed line

Exercise 16.

Add a secondary axis

A secondary axis works well in a chart that shows a combination of column and line charts.

1. Select the combo chart
2. Press CTRL D to duplicate
3. Apply different chart colour
4. Resize and Reposition, as necessary
5. Click the Select Data button

6. Click on the Graduates Employed data series
7. Click Edit
8. Clear Series Values
9. Select percentages (D3:D7)
10. Click on OK

Repeat for Higher Degrees (F2:F7) \& Unemployed (H2:H7)

11. Click on OK

This will change the display of the chart

12. Click the Change Chart Type button
13. Check Secondary Axis boxes for line charts
14. Click on OK

The chart will adjust to display a new axis scale at the right side

Exercise 17.

Empty cells and hidden cells

The default setting in Excel charting is to remove any content in hidden cells and to show zero values as gaps. This can be changed to amend what the chart displays.

a. Hidden data

1. Select column C

2. Right click on the selected column
3. Select Hide

The chart will no longer display the hidden column

4. Click on the single axis chart
5. Click Select Data button on the Chart Tools, Design tab
6. Click Hidden and Empty Cells
7. Check Show data in hidden rows and columns
8. Click on OK

This will display hidden data only for the selected chart

b. Empty cells

1. Right click beside Column C heading
2. Select Unhide
3. Delete cell content C6, E4 \& G5

This will change the display of the chart to the default setting which shows empty cells as gaps
4. Click on the single axis Chart
5. Click the Select Data button
6. Click Hidden and empty cells
7. Select Show empty cells as: Zero
8. Click on OK
9. Click on OK again

This will drop the line chart to zero for any empty cell in the data
10. Click the Select Data button
11. Click Hidden and empty cells
12. Select Show empty cells as: Connect data points with line
This will connect point directing ignoring empty cells
13. Click on OK
14. Click on OK again

This will ignore empty cells and connect values before and after the empty cell. The problem with this is that empty cells will display an "estimated" value based on other data.

15. Go to the data cells
16. Enter values $\mathbf{4 2 7 3}$ in C6, 835 in E3 \& 873 in G4

Graduates employed		Higher Degrees		Graduates Une
4768	76\%	835	13\%	694
3891	78\%	253	5\%	873
3188	68\%	284	6\%	1201
4273	71\%	544	9\%	1163
5014	82\%	379	6\%	716

Exercise 18.

Use images in charts

Go to the Picture Chart tab

1. Select the data range ($\mathbf{A} \mathbf{2}: \mathbf{F} 2$)

4	A	B	c	D	E	F
1	Faculty	2013	2014	2015	2016	2017
2	Business Econ]	9746	9986	10301	10715	11960
3	EAIT	6093	6565	6666	6790	6765

2. Press ALT F1
3. Click the Select Data button
4. Click the Edit button under Horizontal Axis Labels
5. Select cells (B1:F1)
6. Click OK

This will add the years to the X-Axis

7. Click on OK again
8. Double click on the data series
9. Click the Fill and Line icon \uparrow
10. Select Picture or Texture fill

This will fill the columns with the default fill

11. Click on a button to choose an image
12. Click the File... button
13. Locate and select an image file: currency.png These are best kept as simple and small as possible
14. Select the Stack option to adjust the image

The chart will display the image in the data series column
15. Click the Series Options icon
16. Change the Gap width to $\mathbf{1 0 0 \%}$

Repeat for 2 other faculties of your choice

17. Click on data series
18. Press CTRL C to copy
19. Click on Business, Economics and Law Chart
20. Repeat for another chart
21. Click Add Chart Element button
22. Click Legend
23. Select Bottom

Using Graphs

Graphs are only different from charts as they create a diagram of mathematical functions

Differences between Histograms and Bar Charts

There are three principle differences between histograms and bar charts:

1. Histograms are used to show distributions of variables while bar charts are used for comparison of variables.
2. Histograms plot binned quantitative data while bar charts tend to plot categorical data.
3. Bars can be reordered in bar charts but not in histograms.

Histograms

A histogram is a graph used to display the frequency distribution of data in graphical form. It is able to show the proportion of data that fits into specific categories or bins. For example, we may want to find out how many students are a particular age.

Exercise 19.

a. Create a histogram

1. Select column B

2. Click the Statistic chart on the Insert tab

A histogram will display representing the number of students of a particular age. Resize and reposition as necessary

b. Adjust Chart Elements

1. Double click the X Axis (horizontal)
2. Change the Number of Bins to $\mathbf{1 0}$
3. Press Enter

This will provide 10 columns(bins) in our histogram. The X-Axis distributions will change automatically to suit.

4. Change the Bin Width to $\mathbf{1 0}$

This means the distributions will be in 10 year groupings. This will also change the number of bins automatically

5. Change the underflow value to $\mathbf{2 0}$

This will be the starting age of the distributions. This should be higher than the minimum and will be the bin starting point

6. Change the overflow value to $\mathbf{6 0}$

This will be the last age of the distributions, which will be the bin ending point

Format Axis
Axis Options - Text Options

- Ω Ill
\triangle Axis Options
Bins
By Category
Automatic
- Bin width
- Number of bins
\square Overflow bin
$\square \underline{\text { Underflow bin }}$

7. Add Data Labels to Outside End

Exercise 20.

Graphing Quadratic Equations

a. Prepare Data

Go to the worksheet "Quadratic Equations"
Solving the equation $3 X^{2}+2 X+3$

1. Go to cell B5
2. Enter $=\mathbf{3}^{*} \mathbf{A} \mathbf{5}^{\wedge} \mathbf{2 + 2} \mathbf{2}^{*} \mathbf{A} \mathbf{5} \mathbf{+ 3}$

\mathbf{X}	\mathbf{Y}
$=3^{*} A 5^{\wedge} 2+2^{*} A 5+3$	
5	88^{+}
4	59

3. Autofill down to B17
b. Create Chart
4. Select data range (A5:B17)
5. Click Recommended Chart on the Insert tab
6. Select the Scatter chart
7. Click Chart Title element
8. Enter Equation 1

c. Edit Chart Elements
9. Click Insert tab
10. Select Text box
11. Enter equation: $3 X^{2}+2 X+3$

12. Resize and reposition
d. Add data series
13. Select data range (A21:B33)
14. Click Recommended Chart on the Insert tab
15. Select the Scatter chart
16. Click Chart Title element
17. Enter Equation 2

18. Click on Equation $\mathbf{1}$ Chart
19. Press CTRL D to copy
20. Click on the data series in Equation 2 Chart
21. Press CTRL C to copt data series
22. Click on New chart
23. Press CTRL V to paste data series

24. Click on Chart Tile element
25. Press $=$
26. Click on cell A1
27. Press Enter

Although Excel may not appear to offer the required chart they can often be created as a variation of another chart.

Exercise 21.

Tornado/Butterfly Chart
A Butterfly chart is a technique for comparing two data series side by side. Excel doesn't provide the option for a butterfly/tornado chart and it is created by adjusting a 100\% stacked bar chart.

a. Prepare data

You need to have at least 5 columns of data to create the tornado chart

1. Go to the Butterfly sheet
2. Go to cell B15

3. Enter the formula $\mathbf{= 1 0 0 0}-\mathbf{C 1 5}$
4. Autofill down to B24
5. Go to cell F15
6. Enter the formula $=\mathbf{1 0 0 0}-\mathbf{E} \mathbf{5}$

7. Autofill down to cell F24
b. Create Chart
8. Select the data range (A14:F24)
9. Click on Recommended Charts on the Insert tab
10. Select Stacked Bar chart
11. Click on OK
12. Resize and reposition the chart as necessary

c. Adjust Chart Elements
13. Double-Click on the first data series in the chart
14. Format Data Series
a. No fill
b. No line
15. Repeat for the last data series
16. Repeat for the Gap data series
17. Right click on the Gap data series
18. Select Add Data Labels
19. Right click on a gap data label
20. Select Format Data Labels...
21. Check Category Name
22. Clear Value

The category cannot fit into the gap width and will need adjustment
11. Go to cell D15
12. Change the data to $\mathbf{2 5 0}$ or $\mathbf{3 0 0}$ or $\mathbf{6 0 0}$
13. Autofill down to D24

Format Data Series
Series Options *

- 1 Ill

4 Fill

- No fill

Solid fill
4 Border

- No line

Solid line

\triangle Label Options
Label Contains
\square Value Erom Cells
\square Series Name
\checkmark Category Name
\square Value
\checkmark Show Leader Lines

Yes	GAP	No
463	250	624
342	200	396

14. Click on the \mathbf{Y} Axis
15. Press delete
16. Repeat for the X Axis
17. Click on the NO data series
18. Click the Series Option icon Ill
19. Reduce the Gap Width to 50%
20. Click on any data series
21. Click Add Chart Element
22. Hover over Data Labels
23. Select Inside Base
24. Repeat for other data series but choose Inside end
25. Click the Chart Elements icon
26. Clear Gridlines option
27. Click the Chart Title Element
28. Type $=$
29. Click on cell A14

Exercise 22.

Box and Whisker Chart

A Box and whisker chart is the most commonly used in statistical analysis. A box and whisker chart shows distribution of data into quartiles, highlighting the mean and outliers. The boxes may have lines extending vertically called "whiskers".

a. Create a chart

Go to the Box and Whisker sheet

1. Click a cell in the Faculty Expenses data
2. Click the histogram icon on the Insert tab
3. Select the Box and Whisker chart

Excel scans the data and displays a chart with a data series for each different category.

- The box represents half the entries in a series
- The centre line marker represents the average value in a series.
- The Whiskers represent the largest and smallest entries in a series

b. Edit Chart elements

1. Click on the chart elements icon
2. Select Data Labels

The numbers we see here at the top and bottom of the box represent the range that covers the middle number of entries.

The numbers at each end of the whiskers represent the minimum and maximum values of entries

Charts in Other Applications

Exercise 23.

Charts in Word or Powerpoint

There are two main ways to use an excel chart in other files, either as a static image or a dynamic linked object.

1. Go to the basic chart sheet
2. Right click on the formatted clustered column
3. Select Copy
4. Go to destination application - (Word or Powerpoint)

5. Click on the down arrow on the Paste button
6. Select one option:
a. Use destination theme and embed workbook
b. Keep source formatting and embed workbook
c. Use destination theme and link data
d. Keep source formatting and link data
e. Picture

Any embedded or picture chart will not update. Any linked data will update if the original excel data changes.

